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1. Introduction 

The rapid growth of Internet commerce has resulted in the development of online auctions as a 

popular trading method over the past decades. Return policies are widely available in such online auctions. 

Return policies permit auction winners to change their minds by paying a pre-specified penalty fee when 

they receive relevant ex-post information after the auction concludes. A recent search for antique auctions 

on eBay.com yielded 35,758 such auctions with 23,014 (64%) of the sellers offering a 7-day or 14-day 

money-back guarantee. The percentage of art auctions offering refunds on eBay.com was even higher, 

with 131,944 out of 175,329 sellers offering a money-back guarantee, representing 75% of art auctions.  

Return policies are sometimes observed in traditional auctions as well. For example, deposits required 

in auctions for valuable objects such as spectrum licenses, oil field leases, and mineral and gas rights can 

be treated as fixed-fee return policies. If an auction winner fails to pay his/her full bid upon winning, then 

the deposit is not refunded. For example, shortly after the conclusion of the 1996 “C-block” radio 

frequency spectrum auction in the U.S., the bidders re-evaluated the market values of the licenses they 

had just won and determined that the values were far less than the 10-billion-dollar winning bids that they 

were required to pay. As a result, several bidders declined to make their payments to the Federal 

Communications Commission, and thus forfeited their deposits. 

How would a return policy affect bidders’ behavior and what kind of return policy would most benefit 

them? What kind of return policy would most benefit sellers? How should a revenue-maximizing seller 

select the optimal return policy? These are some of the issues we will investigate in this paper. We focus 

on the common-value model in Wilson (1969), which fits reasonably well with auctions for oil field 
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hand, a more generous return pol

                                                   

leases, gas and mineral rights, and spectrum licenses. Our model should also be informative for auctions 

of objects with a major common-value component, such as art and antiques.1 

We analyze the behavior of bidders in second-price auctions and focus on linear return policies under 

which the seller can charge a percentage fee in addition to a fixed fee. Linear return policies are very 

popular because they are, like linear pricing, easy to implement in practice. We provide a closed-form 

solution for the unique symmetric equilibrium when returns are not completely free. When returns are 

free, there exist multiple equilibria, all of which yield zero payoffs for the bidders, but have different 

implications for the seller.  

Results from the literature on return policies offered by retail stores, such as Che (1996), predict that 

consumers will be better off with a more generous return policy. However, perhaps surprisingly, it turns 

out that a more generous return policy actually hurts consumers in auctions. This counterintuitive result 

arises from the fact that a more generous return policy not only protects consumers from bad shocks, but 

also reduces bidders’ fears of falling prey to the winner's curse. This induces them to bid more 

aggressively in the auction, resulting in higher bids and lower consumer surplus.2  

We also examine how return policies affect the seller’s revenue. On the one hand, with a more 

generous return policy, bidders bid more aggressively, which enhances the seller’s revenue. On the other 

icy makes it more likely that the winner will return the object. By 

        
1Resale can introduce a common-value component to a private-value good. See Cheng and Tan (2010) and Haile (2003) for 
examples. 
2It can be shown that under independent private values with signals and valuations distributed independently across bidders, a 
more generous return policy causes bidders to bid more aggressively, but has no effect on consumer surplus. Thus the driving 
force behind our result is the common-value feature of the auction and the winner’s curse effect. The proof is available in an 
online appendix. In contrast, with only one buyer in Che (1996), the winner’s curse effect is absent as there are no other 
competitors. Che’s paper allows buyers to be risk-averse. A full return policy insures such buyers against ex-post risk, thus 
making them better off.  
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selecting an appropriate return policy, the seller can achieve higher revenue by balancing the trade-off 

between higher bids and fewer returns.  

We find that the optimal (linear) return policy should always be in the form of a fixed fee (or subsidy), 

implying that the seller should not charge a percentage fee. This resembles many return policies in reality: 

deposits in oil field leases, mineral and gas rights, and spectrum auctions are usually specified in fixed 

amounts, and many sellers on eBay provide money-back guarantees with fixed shipping subsidies or 

shipping and handling fees.  

We conduct an experiment to test the predictions of our theory. In the experimental setting, items may 

have a high value of 100 or a low value of 0, with an a priori 50% probability of each outcome. We focus 

on return polices with fixed fees since our theory predicts that proportional fees are suboptimal for seller 

revenue maximization. There are four experimental treatments: No Return (NR), High Fee (HF), Low Fee 

(LF) and Free Return (FR). We observe that bids increase and bidders’ earnings decrease when return 

policies are more generous as predicted by theory. Correspondingly, sellers’ revenues increase with more 

generous return policies as long as some positive fee is charged for a return. However, when returns are 

free, many bidders bid above the highest possible value for the good, and subsequently return the item 

regardless of the revealed value. While this is consistent with theoretical equilibrium behavior, it is not an 

equilibrium that is optimal for the seller who receives zero revenue when such an outcome occurs.  

This paper is related to the literature on the theory of public ex-post information. When ex-post 

information is public and can be contracted on, its effect has long been recognized in the auction literature 

pioneered by Hansen (1985). In general, it has been shown that ignoring such information is sub-optimal, 
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and adopting a mechanism conditional on the realization of the information is revenue improving. Riley 

(1988) demonstrates that royalty bidding is better than cash bidding. Abhishek et al. (2011) show that by 

charging an initial amount plus requiring a profit-sharing contract, the seller can generate more revenue. 

DeMarzo et al. (2005) examine bidding with securities and show that it can enhance revenue. However, 

all these mechanisms require the seller to track down the realized value implied by the ex-post 

information, which could be quite costly. In addition, sometimes the ex-post information may be 

unobservable, and this is common for objects sold through online auctions. In such cases, mechanisms 

conditional on ex-post information may not be feasible. In contrast, return policies do not require the 

seller to observe any ex-post information; it is solely up to the winning bidder to decide whether or not to 

return the object. 

This paper is also related to the dynamic mechanism design literature in which agents learn additional 

private information over time. As shown in Eső and Szentas (2007), Courty and Li (2007), and Zhang 

(2013), the seller can utilize a handicap system or a menu of refunds to discriminate dynamically among 

the agents and to extract more revenue with ex-ante participation constraints.3 This literature usually 

assumes private values and independent signals. Instead of adopting a mechanism design approach, we 

consider a specific mechanism, namely a second price auction with a linear return policy, and focus on the 

effect of alternative return policies on consumers.  

There is a huge literature on auctions. However, few papers consider return policies. Hafalir and 

 
3Krähmer and Strausz (2015) show that if instead the participation constraint is an ex-post one, the value of eliciting the agent’s 
information sequentially is eliminated, and it is optimal to design a simple contract conditioning only on the agent’s final 
information. 
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Yektas (2011) consider second-price auctions under independent private values that are subject to shocks 

after the transaction and compare the revenues among spot auctions, forward auctions, and forward 

auctions with a full return policy. Our current paper considers common-value auctions with a full range of 

linear return policies. Huang et al. (2007) recently considered an algorithm for multi-unit auctions with a 

partial refund for bid withdrawals that occur for exogenous reasons. That paper provides an analysis from 

the perspective of artificial intelligence, and thus the strategic behavior of bidders is not its focus. 

In the related experimental literature, bidding in common-value auctions is well documented in 

laboratory settings (see Kagel and Levin, 2002, for a survey). Assuming symmetric bidding behavior in 

common-value auctions, bidders only win when they have the highest signal. Unless this is accounted for 

when formulating bids, the winner of the auction will receive below normal or even negative profits. Such 

a judgmental failure is known as the “winner’s curse.” Previous experimental studies show that 

inexperienced bidders are vulnerable to the winner’s curse (Kagel and Levin, 2002), while experienced 

bidders have learned to avoid the winner’s curse by the time they appear for subsequent sessions (e.g., 

Casari et al., 2007; Garvin and Kagel, 1994; and Goertz, 2012). In our study, a return policy acts as 

insurance against overbids and thus mitigates the winner’s curse. Nonetheless, we follow the earlier 

experiments by introducing the factor of experience to minimize any possible impact of the winner’s 

curse on our results.    

The rest of this paper is organized as follows. In Section 2, we set up the model. In Section 3, we 

characterize the bidders’ equilibrium strategies in second-price auctions and perform some preliminary 

analysis. In Section 4, we illustrate the effect of return policies on consumer surplus, social welfare and 
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seller’s revenue. In Section 5, we describe the experimental design using a simplified version of the 

general model. In Section 6, we discuss the experimental results. In Section 7, we conclude. All proofs are 

relegated to appendices. 

2. The Model 

Suppose that there are  bidders bidding for one object. The object value is the same for all bidders. 

Let  denote this common value. Assume that  with probability , and  with 

probability 1 , where . The distribution for  is common knowledge. Before bidding 

starts, bidder 1, ,  receives a private signal , which is correlated with . However, 

conditional on , this signal is independently distributed across the bidders. If , then  follows 

the distribution with c.d.f.  and p.d.f. . If , then  follows the distribution with c.d.f. 

 and p.d.f. . Assume that  and  have a common support , . 

The object in the auction can be returned by the winning bidder for a refund. We assume that there is 

a shipping cost for the winning bidder to return the object. This cost is denoted by . It could include the 

time and effort taken by the winning bidder to ship the object back as well as the actual shipping charges. 

Let  be the transaction price (i.e., the price the winning bidder paid) in the auction. A return policy is 

denoted by , ; if the winning bidder returns the object, s/he gets back the price s/he paid (i.e., ), 

minus the return fees .4 Here,  is a prespecified proportion of the price p, which may 

correspond to a proportional restocking fee in the real world. Meanwhile,  is simply a fixed fee or 

subsidy as explained below. 
                                                         

4We restrict our analysis to linear return fees. This simplifies the calculations significantly. Moreover, we are not aware of any 
other type of return policy in reality. 
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We place some restrictions on the return policy to simplify the analysis. We assume that 0 1 

and that . The former ensures that a bidder cannot make money by simply using the 

win-and-return strategy. The latter ensures that the winning bidder’s shipping cost is not overcompensated. 

If  is positive, then it is a fixed fee, corresponding to a handling charge or a service charge in reality; if 

 is negative, it is a subsidy, corresponding to a refund or partial refund of the winning bidder’s shipping 

cost. The difference between the shipping cost  and the fixed fee  is that the former is paid to a third 

party (to cover the actual cost of shipping) while the latter is a pure transfer from the winning bidder to 

the seller. 

The game proceeds in three stages: 

1.  Nature selects  or . Conditional on , each bidder receives an independent signal ( ). 

2.  A second-price auction with return policy ,  is held. The winner pays accordingly and receives 

the object. 

3.  The winner learns the true  and decides whether or not to return the object to the seller for a refund.  

We assume that the winning bidder learns costlessly the true value of  after s/he wins and obtains 

the object. In auctions for oil field leases and gas and mineral rights, for example, the winning bidders 

usually learn more information by doing more geological testing and analysis after winning the auction. 

Another example is online auctions where, once the winning bidder receives the object, s/he usually 

learns more about its value. 

In our analysis, the likelihood ratio for bidders’ signals plays an important role. Let  
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denote the likelihood ratio of  versus  for the highest signal among  bidders. Then 

. Assume that  is increasing in , i.e.,  dominates  in likelihood ratio. This 

ensures that a higher signal implies a higher probability of . 

 
3. Equilibrium Analysis 
 

In this section, we characterize the bidders’ equilibrium bidding function. We focus on the symmetric 

perfect Bayesian equilibrium with a strictly increasing bidding function ·  in the auction. We restrict 

our attention to bidding functions taking values in , . We do so because a bidder should not bid 

more than  or less than . Bidding more than  sometimes gives the bidder a negative surplus and 

is dominated by bidding . Moreover, if the bidder with the lowest possible signal bids less than  in 

a proposed equilibrium, then it is a profitable deviation for that bidder to bid   instead given that all other 

bidders follow the proposed equilibrium strategy. Doing so means s/he wins with positive probability and 

thus receives a positive expected surplus, while in the proposed equilibrium, the expected surplus was zero. 

Therefore bidding less than  cannot be part of an equilibrium. 

We choose bidder 1 as the representative bidder in our analysis. Let  denote the second highest 

signal among all bidders, and  denote the highest signal among bidders 2, …, n. If , then  and 

 follow distributions with c.d.f. 1  and , 

respectively. Let 1 1  and 1  

denote their respective p.d.f.s. Furthermore, , ,  and  represent similar c.d.f.’s 
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and p.d.f.’s when . 

We begin with the return stage. Suppose that bidder 1 receives signal , bids , and wins the 

object. Since it is a second-price auction, s/he pays . After winning, if s/he learns that , s/he 

will not return the object since his/her payment is less than . If s/he learns that , s/he returns 

the object for a refund if and only if .5 The left-hand side of the 

inequality is the payoff s/he receives if s/he keeps the object, while the right-hand side is the payoff s/he 

receives if s/he returns the object for a refund. 

Given the winning bidder’s return decision in the return stage, we can examine the symmetric 

equilibrium bidding function in the auction stage. We focus on two hypothetical auctions because they 

will be helpful in describing the equilibria in our model. The first is a second-price auction in which no 

return is allowed, while the other is a second-price auction in which the winner is required to return the 

object when . Let  and  denote the equilibrium bidding functions in the two 

hypothetical auctions. The first hypothetical auction is a standard second-price auction and a special case 

of Milgrom and Weber (1982). A bidder with signal  bids | , , the expected object 

value conditional on his/her own signal being  and the highest signal among other bidders being . 

Define this value as . Thus, 

| , . 

For the second hypothetical auction, if , s/he receives ; if , s/he receives nothing 

but pa  price plus . Given that all other bidders bid according to the ys the proportion  of the

                                                         
5We assume that if a winner is indifferent between keeping and returning the object, s/he keeps the object.  
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equilibrium bidding funciton . , buyer 1’s surplus when s/he pretends to have signal  is given by  

    Π ,  

  | | ,  

    | | ,  

      .  

where  

           Pr |  

 P | P
P P P | P|

 

 ,  

and where Pr | 1 .  

The FOC yields:  

              .                                    (1)  

 Note that  and  are both strictly increasing. It is useful to discuss their relationship to 

each other. If ,  is always below ; if ,  is always above 

; otherwise,  single crosses  from above at . Denote  as follows:  

            

,   ;

,  

,   .

;                            (2) 

Now, we are ready to characterize the equilibrium of our model. Let  denote the bidding function 

in this case. Suppose that bidder 1’s signal is  and s/he pretends to have signal  and bids . 

Given that s/he acts optimally in the return stage, his/her expected surplus in the auction is given by:  
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 Π , | | ,  

     Pr  | max  ,  

                             | ,  

     

           max  , γ ,  

When the common value is revealed to be high, bidder 1 always keeps the object; when the common 

value is revealed to be low, bidder 1 can choose to keep or return the object depending on the realization 

of the payment. 

In equilibrium, it is optimal for bidder 1 to report truthfully and the first order condition yields: 

max , γ 0. 

The FOC can be simplied to  

, . 

It can also be verified that the FOC is also sufficient for the equilibrium. The proof is standard but tedious 

and is available in an online appendix. 

We thus have the following proposition.  

Proposition 1:  In a second-price common-value auction with return policy ( , ), there exists a 

symmetric monotone perfect Bayesian equilibrium characterized as follows. In the auction stage, bidders 

bid according to the strictly increasing function , ; and in the return stage, the 

winner returns the object if and only if   and the second highest signal is higher than . This 

equilibrium is the unique symmetric monotone perfect Bayesian equilibrium unless 0 and .  
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 Our theoretical discussion assumes a continuous distribution of signals. However, under a 

second-price auction, the derived bidding function also applies to the discrete distribution of signals 

employed in our experimental design. This is in contrast to first-price auctions where the equilibrium for 

continuous signals will be quite different from that for discrete signals (e.g., Goeree, Holt and Palfrey, 

2002). 

Note that, except for the free-return policy case, the equilibrium we characterize is unique among 

symmetric equilibria. If we go beyond the class of symmetric equilibria, there exist other asymmetric 

equilibria in second-price auctions regardless of whether the signals are continuous or discrete. As pointed 

out in Birkhchandani and Riley (1991), whenever asymmetric equilibria are feasible, one such 

equilibrium involves more aggressive bidding behavior by a single buyer relative to the symmetric 

equilibrium and more passive behavior by the other buyers. For example, consider our model with two 

bidders. One bidder bidding higher than vH regardless of his/her signal and the other bidding zero 

regardless of his/her signal is an asymmetric equilibrium under any return policy. However, it is common 

in the literature for researchers to focus primarily on the symmetric equilibrium since asymmetric 

equilibria often involve dominated or discontinuous strategies or inefficiency. (See Birkhchandani and 

Riley, 1991, Chapter 8.2 in Krishna, 2009 and Milgrom, 1981 for detailed discussions on asymmetric 

equilibria.) 

For the full return policy, i.e, when 0 and , in the equilibrium characterized by 

Proposition 1, we have , . Furthermore, the winner returns the object if and only if . 

However, this equilibrium is not unique even within the class of symmetric equilibria. In fact, besides the 
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above equilibrium, there exists a continuum of equilibria under which at least two bidders bid strictly 

higher than , and the winner always returns the object. Obviously, bidding more than  is weakly 

dominated by bidding . For simplicity and continuity, when 0 and , we focus in the 

theory on the equilibrium described in Proposition 1.6 

When the seller puts in place a no-return policy, bidders anticipate the winner’s curse and adjust their 

bids downward from their estimates of the object’s value using their own signals. When a return policy is 

in place, they bid more aggressively as they are somewhat protected from overbidding. In this sense, 

return policies mitigate the winner’s curse. In fact, return policies can overdo this mitigating effect. When 

the return policy is generous enough, bidders may bid more than their estimates of the object’s value. For 

example, when  and 0, players will bid , the highest possible value of the object. This 

leads to the possibility of enhancing the seller’s revenue by providing a return policy. Of course, return 

policies can negatively impact the seller’s revenue as well as the efficiency of trading as the seller usually 

has a lower reservation value than the bidders. By selecting an appropriate return policy, the seller can 

achieve more revenue by balancing the tradeoff between higher bids and efficiency losses. In the 

following section, we will investigate this tradeoff in detail. 

4. The effects of return policies on consumer surplus, social welfare and seller’s revenue 

 In this section, we first study how return policies affect bidders’ expected surplus (i.e., consumer 

surplus) and the expected gains from trade (i.e., social welfare). We then examine the effects of return 

    
6Note that our experimental result shows that if ,  0 and , bidders actually do not follow this equilibrium prediction, 
but instead often play one of the weakly dominated equilibria. However, as long as there is even a very small amount of cost to 
return an item, the data are qualitatively consistent with our equilibrium prediction. 
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policies on the seller’s revenue (i.e., producer surplus) and characterize the optimal return policy for the 

seller.  

4.1  Consumer surplus and social welfare 

 Denote the consumer surplus as , , and the total surplus as , , respectively. Let  be 

the seller’s value of the object.7  

Consumer surplus is given by:  

  ,  

    

   

 

  .                   (3) 

The object is returned only when the common value turns out to be low and the second highest signal 

is higher than . Note that  is a function of  and . The following proposition illustrates how 

return policies affect consumers’ surplus. 

Proposition 2: With a more generous return policy (a lower  or ), the consumer surplus is lower.  

This result is somewhat counter-intuitive. In the case of return policies in retail stores, a more 

generous return policy protects consumers better when bad shocks occur, making them better off. This 

effect is also present in an auction. However, in an auction bidders are also competing with each other. A 

more generous return policy thus induces bidders to bid more aggressively and this effect reduces 

consumer surplus. In our model, the second effect always dominates the first one. This is because bidders 

the probability of returns in their equilibrium strategy calculation than always have a higher estimate of 

                                                         
7The analysis will not change if the seller's value depends on the realization of the common value as long as s/he does not know it 
ex-ante. This is because when the common value turns out to be high, the winner will not return the object anyway. Thus, in such 
a case, we can use  to denote the seller's value when the common value is low. 



  15

what actually occurs. In his/her equilibrium calculation, because it is a second-price auction, a bidder 

assumes (correctly) that the other bidder has the same signal as him/herself when calculating his/her 

break-even bid. However, this bid is paid to the seller only when the other bidder has a higher signal and 

wins. This higher signal reduces the probability that  and thus correspondingly reduces the 

probability that the winner will actually return the object relative to the probability correctly used in the 

equilibrium strategy calculation. 

If we examine the above result from the perspective of the linkage principle, it seems less surprising 

and relatively intuitive: since the return policy links bidders’ payments to additional information (the true 

value of the object), it erases bidders’ informational rents. However, the intuition is less transparent than it 

appears. The traditional linkage principal following Milgrom and Weber (1982) applies only when the 

final allocations of the object are the same across the scenarios being compared. However, different return 

policies will, in general, induce different final allocations of the object. Our result suggests that the 

linkage principal sometimes applies even when the final allocation differs. 

We can also consider how return policies affect social welfare:  

 ,  1 .                             (4) 

Proposition 3:  With a more generous return policy (a lower  or ), social welfare is higher if and 

only if .  

 A more generous return policy induces more returns: this is more efficient if the seller values the 

returned object highly enough. 
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4.2  Seller’s revenue 

 We now examine the effect of the return policy on the seller’s revenue and characterize the optimal 

linear return policy for the seller. Denote the seller’s revenue as , . It is obvious that ,

, , . If , a more generous return policy (a lower  or ) increases social 

welfare and decreases consumer surplus, therefore unambiguously increasing the seller’s revenue. Note 

that we restrict the return policy to  and 0 1. Thus, the unique optimal return policy is 

 and 0. This is summarized in the following proposition. 

Proposition 4:  If , a more generous return policy (a lower  or ), means that the 

seller’s revenue is higher, implying that the optimal return policy is  and 0.  

The condition  requires that the seller values the object more than bidders do when the 

common bidder value is low. This could be true if  represents a situation where some fixable problem 

occurs, and it is easier for the seller than for the bidder to fix the problem. However, in general such a 

condition could be violated. 

For the rest of the analysis in this section, we focus on the case where . Since 

, , , , the seller’s revenue may not change monotonically with the return policy. 

There is no clear conclusion about how  and  would affect the seller’s revenue.8 We proceed as 

follows using an indirect method. The seller can choose  and , which then uniquely determine the 

cutoff . Alternatively, if we allow the seller to choose  and  directly, it is equivalent to allowing 

the seller to choose  and , thus determining . Therefore, we can rewrite the seller’s revenue as a 

    
8This can be shown by examining Equations (11), (12), (13), and (14) in Appendix A. 
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function of  and :  

 ,    

           

 

   

            .                                                     (5) 

The following proposition summarizes how return policies affect the seller’s revenue in this case.  

Proposition 5:  When , given , the seller’s revenue is strictly decreasing in , implying 

that 0 (i.e., no proportional fee) is optimal.  

The intuition behind this proposition is as follows. Given the cutoff , the seller can choose a 

combination of a fixed fee and a proportional fee consistent with this cutoff. However, using a 

proportional fee diminishes the seller’s revenue since it incentivizes bidders to reduce their bids relative 

to the fixed-fee case consistent with the same cutoff. This is because higher winning bids imply a higher 

cost of returning the object in the proportional-fee case. In contrast, a fixed fee is a lump-sum transfer and 

does not have this distortion. Therefore, to maximize the seller’s revenue, a proportional fee is inferior. 

Now we examine the optimal cutoff level of .  

    ,  

    

       1  
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In the above expression, either the consumer surplus effect or the social welfare effect could dominate. 

One observation is that if  is very small, then the overall sign is positive and it is optimal to 

induce no return in equilibrium. However, the following example shows that the seller’s revenue is not 

necessarily monotonic in x* in general. 

Example 1: Consider two players. Suppose that 0, 100 , with  to be specified later, 

and 0.5, 0. We set 0 as this is always optimal for the seller, and examine how the 

seller’s revenue is affected by the return policy by changing , which then uniquely determines the 

value of . For 0,10 , , , , . Then 

. Note that  is indeed strictly increasing as previously assumed. We will vary 

the value of  and let it take the values of 0, 30, 50 and 80, respectively. 

The results are shown in Figure 1. When 0, the seller’s revenue is decreasing in ; the optimal 

return policy is 0, i.e., the full-refund with full-cost-reimbursement policy 0. When 

30, the seller’s revenue first increases, then decreases, and then increases in ; the optimal return 

policy is a partial-refund policy with 1.2. When 50, the seller’s revenue first increases, then 

decreases, and then increases in x ; the optimal return policy is the no-refund policy. When 80, the 

seller’s revenue is increasing in ; the no refund policy is optimal again. Note that as  increases, the 

optimal return policy becomes less generous. This example also illustrates the difficulties in determining 



the condition for an interior optimal return policy as the revenue function is not well behaved.  

 
Figure 1: Plots of Revenue against x* 
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5. Experimental Design 

Our experiments adopt parameters from Example 1 in the previous section with 0. We 

implement second-price auctions with two bidders.9 The auctioned item has either the common value 

100 or the common value 0 in experimental dollars with equal probability. To make the 

experiments transparent, the signal generating procedure in practice is a discrete approximation to the 

continuous distributions in Example 1. In our experiments, the bidder receives a partially informative 

signal by drawing a numbered chip from an urn containing numbered chips. If 100, the urn contains 

one 1, two 2’s, …, nine 9’s. Alternatively, if 0, the urn contains one 9, two 8’s, …, nine 1’s. The 

number on the chip is the bidder’s signal. 

We consider a return policy with a fixed handling fee: if the winning bidder returns the item, s/he gets 

back the price paid minus the handling fee α. Our experimental treatments differ by setting α at four 

different levels. (1) In the No-Return (NR) treatment, ∞, implying that the winning bidder cannot 

return the item. (2) In the High-Fee (HF) treatment, 20. (3) In the Low-Fee (LF) treatment 5. 

(4) In the Free-Return (FR) treatment 0.  

In this case, o

max  100 2

10 2 2

the unique symmetric mon tone equilibrium bidding strategy reduces to  

, 100
2 10 2

2 . 

Table 1 indicates the predicted bids for each of the four treatments, while Figure 2 plots each of the 

bidding functions. 

 
                                                         

9We used two bidders in each auction since as the number of bidders increases, the bidding function becomes flatter, making it 
more difficult to test the impact of signals on bids. 



Table 1: The Predicted Bids 
 

Signal NR HF LF FR 

1 1.2195 1.2195 1.2195 100 

2 5.8824 5.8824 20 100 

3 15.5172 15.5172 72.7778 100 

4 30.7692 55 88.75 100 

5 50 80 95 100 

6 69.2308 91.1111 97.7778 100 

7 84.4828 96.3265 99.0816 100 

8 94.1176 98.75 99.6875 100 

9 98.78049 99.7531 99.9383 100 

 
 
 

Figure 2 
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Proposition 2 and Proposition 4 in section 4 predict that bidders’ expected earnings fall while the 

seller’s expected revenues rise as α decreases toward zero. However, when 0, there are multiple 

equilibria. One equilibrium involves all bidders bidding 100 with the winner returning the item when 

0. This equilibrium is efficient, creating the maximum possible surplus. If weakly dominated 

strategies are allowed, there are other inefficient equilibria that involve bids above 100 with the winner 

returning the item regardless of whether 0 or 100. These equilibria have very different 

implications for a seller selecting a free-return policy. In the case of the efficient equilibrium, the seller 

extracts the maximum possible revenue from the bidder. However, in the case of the inefficient equilibria, 

the seller receives no revenue at all. One goal of this study is to test empirically which equilibrium arises 

when 0.  

Treatments were implemented in two-day sequences consisting of two one-hour sessions, one on each 

of the two days. On day one of the two-day sequence, the recruited participants started the first one-hour 

session by participating in two rounds of practice auctions. The first round of practice auctions was 

hand-run and real urns with numbered chips were presented to participants. Starting from the second 

practice round and throughout the rest of the session, the auctions and the signal-generating procedure 

were computerized in a manner analogous to the hand-run method used during the first practice round. 

After the practice rounds, the participants began the 15 monetary-payoff rounds with 225 experimental 

dollars of capital endowment. In each round, participants were randomly and anonymously matched into 

markets of two bidders. Participants were informed that if their net balance dropped to zero or below, they 



  23

would no longer be permitted to continue playing.10 Day two of the two-day sequence took place one 

week later, and the same participants were invited back. On day two, procedures were the same as on day 

one except that there were no hand-run practice rounds. To give participants an incentive to return on day 

two, their earnings on day one were retained until the completion of the day-two session. 

There were four two-day sequences for each of the NR, HF, LF and FR treatments. No participant 

was allowed to participate in more than one two-day sequence. There were 8-12 participants in each 

sequence. Table 2 presents details on the number of participants on days one and two of each sequence. 

Table 2: Number of Participants in Each Two-Day Sequence 

NR Day 1 Day 2 HF Day 1 Day 2 LF Day 1 Day 2 FR Day 1 Day 2 
1 
2 
3 
4 

12 12 1 
2 
3 
4 

10 10 1 
2 
3 
4 

12 12 1 
2 
3 
4 

12 10 
12 10 10 8 12 12 12 10 
12 8 12 12 12 12 12 12 
10 8 12 10 12 12 12 10 

We conducted our experiments at the Experimental Economics Laboratory, Shanghai University of 

Finance and Economics (SUFE). The participants were recruited from a campus-wide list of 

undergraduate students who had previously responded to an announcement in a campus-wide required 

first-year undergraduate course. None of the participants had any experience with common-value auction 

experiments. All laboratory sessions were computerized using Visual Basic 6.0. Both the instructions and 

the information shown on the computer screen were in Chinese. The average payment was 44.07 RMB 

(15 experimental dollars were equivalent to 1 RMB and the exchange rate was US$1 = 6.23 RMB) for the 

two one-hour sessions making up a two-day sequence. Since the average hourly wage in Shanghai for a 

                                                        
10No participant went bankrupt in any of our experiments. 



college graduate is about 15 to 20 RMB, 44.07 RMB is a considerable amount for undergraduate students. 

6. Results 

This section reports experimental results for the monetary-payoff rounds.11 

6.1  Bids 

Figure 3 shows the bidders’ average bids for each treatment, conditional on the signal received. 

Figure 3 suggests that a more generous return policy is associated with higher bids as predicted by theory. 

 
Figure 3: Treatment Difference in Bids 
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ignificant between the LF and F

                                                   

 Treating each session’s average bid as one independent observation, Wilcoxon-Mann-Whitney 

rank-sum tests show that for inexperienced bidders (sessions on day 1), bids in the NR treatment were 

significantly lower than those in the HF treatment ( 0.043), while bids in the HF treatment were 

significantly lower than those in the LF treatment ( 0.043). However, the difference in bids was not 

s R treatments ( 0.149). For experienced bidders (sessions on day 2), 

      
11The session averages and the standard deviations across sessions in each treatment are reported in Appendix C.   



the pattern was similar, but not identical: while bids in the NR treatment were not significantly different 

from those in the HF treatment ( 0.248), bids in the HF treatment were significantly lower than those 

in the LF treatment ( 0.021), and bids in the LF treatment were lower than in the FR treatment with 

marginal significance ( 0.083). 

Next we examine whether experienced bidders bid closer than inexperienced bidders to the 

theoretically predicted bids. For the multiple-equilibrium FR treatment, we use the efficient equilibrium 

in which all bidders bid 100 regardless of the signal received as our theoretical benchmark. Figure 4, 

which plots the average bids by signal for each treatment and level of experience, suggests that 

experience does not help bring bids closer to the theoretical prediction in any of the four treatments. To 

study the impact of experience more rigorously, we use a measure of the mean squared deviation (MSD) 

from the theoretical equilibrium prediction. The MSD between the actual bids in the experimental market 

and the value predicted by the model is measured as follows: 
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 * *

1

1MSD[ , ( )] ( ( ))
T

i
b b x b b x

T =

= −∑ 2

where b is the actual bid, b*(x) is the predicted bid conditional on the signal x received by the bidder, and 

T is the total number of bids in the monetary-payoff rounds within a session. Comparing the MSD in the 

inexperienced sessions with the MSD in the experienced sessions, the Wilcoxon signed-ranks test yields 

no significant difference in any of the four treatments ( 0.715 in NR, 1.000 in HF, 0.715 

in LF and 0.144 in FR). Moreover, in the FR treatment, many bidders bid higher than 100, behavior 

consistent with the equilibria involving weakly dominated strategies. 



 

Figure 4: Actual Bids vs. Predictions 
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In Table 3 we report a random-effects regression (with random effects at the sequence level, at the 

session level and at the individual level, and robust standard errors clustered at the sequence level) for the 

determinants of bids over all monetary-payoff rounds. The clustered robust standard errors are robust to 

both heteroskedasticity and correlation within clusters (Arellano, 2003; 2010; Wooldridge, 2013). The 

regression shows that in the NR treatment bids increased significantly as the signal increased (the 
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coefficient for Signal was positive with 0.000). In both the LF and HF treatments, the relationship 

between bids and signals was close to the NR relationship (neither the coefficient for Signal*LF nor that 

for Signal*HF was significantly different from zero with 0.791 and 0.995, respectively). 

However, in the FR treatment, the empirical bidding function was much flatter than in the NR treatment 

(the coefficient of Signal*FR is negative with 0.088), though the relationship between bids and 

signals was still positive (a Wald χ2 test shows that the sum of the coefficients of Signal and Signal*FR is 

positive with 0.019). The regression also indicates that bidders tended to bid higher during the later 

rounds of the FR treatment (a Wald χ2 test shows that the sum of the coefficients of Round and Round*FR 

is positive with 0.006), while round had no significant impact on bids in the other treatments (the 

coefficient for Round was positive with 0.193). Moreover, the regression demonstrates that the bids 

on day 2 were higher than the bids in day 1 (the coefficient of Experience is positive with 0.000). 

The increase in day-2 bids is significantly greater for the FR treatment (the coefficient of Experience*FR 

is positive with 0.048). The empirical bidding function for the FR treatment reflects the fact that 

many bidders place bids greater than 100 regardless of the signal received. Such behavior creates no 

surplus for either the bidder or the seller. In this treatment, bidders generally earned nothing since, as 

predicted by theory, the seller captured any surplus created by trade. We conjecture that as the experiment 

proceeded the fun of winning the auctioned item and then returning it began to dominate concern with 

monetary payoffs, which were always zero in any case. Moreover, since bidders generally earned nothing 

in the efficient equilibrium, they may have decided that the sellers shouldn’t earn anything either. This 

could be achieved at no cost to themselves by bidding above 100 and then returning the item. Thus, bids 
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rose as bidders competed to win (and then return) the item. As mentioned previously, bidding above 100 

is consistent with the inefficient equilibria involving weakly dominated strategies. 

Table 3: Determinants of Bids  

 Coef. Robust Std. Err.  
Constant -9.829** 4.69 
FR dummy 53.910*** 13.60  
LF dummy 37.369** 17.37  
HF dummy 9.301 6.65  
Signal 10.612*** 0.77  
Signal*FR -4.569* 2.68 
Signal*LF 0.934 3.52 
Signal*HF -0.006 0.98 
Experience dummy 10.281*** 2.41  
Experience*FR 87.997** 44.49  
Experience*LF -4.180 7.89  
Experience*HF -2.032 4.03  
Round 0.510 0.39  
Round*FR 5.984** 2.40  
Round*LF -0.065 0.70 
Round*HF 0.383 0.41  
Obs. 5310  
Wald Chi2 N/A 
Log pseudolikelihood -30499.979 

* indicates significance at p = 0.10 (two-tailed tests); ** indicates significance at p = 0.05 (two-tailed 
tests); *** indicates significance at p = 0.01 (two-tailed tests). 

6.2 Earnings 

Proposition 2 in section 4.1 predicts that consumer surplus is lower with a more generous return 

policy. Figure 5 suggests that this is true empirically. A bidder’s total payoff (in experimental currency) in 

a session decreases as the handling fee for returning the auctioned item goes down. Compared with 

payoffs to inexperienced bidders on day 1, the average total payoffs for experienced bidders on day 2 

were closer to the theoretical prediction (i.e., the ex ante expected total payoff in 15 monetary-payoff 



rounds plus 225).  

 

Figure 5: Average Total Payoff 
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Treating each session’s average total payoff as one independent observation, the 

Wilcoxon-Mann-Whitney rank-sum tests show that for inexperienced bidders (sessions on day 1), while 

total payoffs in the NR treatment were not significantly different from those in the HF treatment 

( 0.248), total payoffs in the HF treatment were higher than in the LF treatment with marginal 

significance ( 0.083) and total payoffs in the LF treatment were also significantly higher than in the 

FR treatment ( 0.043). For experienced bidders (sessions on day 2), the pattern is similar: while total 

payoffs in the NR treatment were not significantly different from those in the HF treatment ( 0.387), 

total payoffs in the HF treatment were significantly higher than those in the LF treatment ( 0.043) and 

total payoffs in the LF treatment were likewise significantly higher than in the FR treatment ( 0.021).   
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A random-effects regression (with random effects at the sequence level, at the session level and at the 

individual level, and robust standard errors clustered at the sequence level) for treatment differences in 

bidders’ payoffs in each auction in Table 4 confirms the observations in Figure 5. Bidders’ payoffs are 

higher in the NR treatment, compared with the FR, LF and HF treatments (the signs of the coefficients of 

the FR and LF dummies are significantly negative while that of HF is negative and marginally significant) 

on day 1. Moreover, day-1 earnings are higher in the HF than in the LF treatment (a Wald χ2 test yields p 

= 0.023) and higher in the LF than in the FR treatment (a Wald χ2 test yields 0.011). Compared with 

day 1, bidders earn less on day 2 when they have more experience while simultaneously bidding against 

more experienced opponents. This is demonstrated for the NR treatment by the significantly negative 

experience coefficient (p = 0.013) and for the HF (p = 0.000), LF (p = 0.012), and FR (p = 0.034) 

treatments by a series of Wald tests. Another series of Wald tests corroborates the results of the 

Wilcoxon-Mann-Whitney rank-sum tests for experienced bidders, indicating that while earnings in the HF 

treatment are not significantly higher than in the NR treatment (p = 0.426), FR earnings are significantly 

higher than LF earnings (p = 0.006), and LF earnings are in turn higher than HF earnings (p = 0.013).  

 

 

 

 

Table 4: Comparing Bidders’ Payoffs  

 Coef.  Robust Std. Err.  



  31

Constant 13.377*** 1.10 
FR dummy -10.244*** 1.42 
LF dummy -6.095*** 1.77 
HF dummy -2.474* 1.37 
Experience dummy -4.345** 1.75 
Experience*FR 3.056* 1.85 
Experience*LF 0.844 2.23 
Experience*HF 0.929 1.98 
Obs. 5310 
Wald Chi2 240.81 
Log pseudolikelihood -24801.37 

* indicates significance at p = 0.10 (two-tailed tests); ** indicates significance at p = 0.05 (two-tailed 
tests); *** indicates significance at p = 0.01 (two-tailed tests). 
 

Figure 6 examines the efficiency loss associated with return policies. Setting the seller’s value for the 

auctioned item at zero, there is a loss in aggregate surplus if the winner of the auction chooses to return 

the item when 100. In the HF and LF treatments, winners rarely return the item when 100. 

However, in the FR treatment, the frequency of returning the item when 100 is 0.266 for 

inexperienced bidders, and 0.497 for experienced bidders. We observe significant efficiency loss 

associated with the FR treatment. To compare the frequency of returning the high quality V 100 items 

across treatments, we run Wilcoxon-Mann-Whitney rank-sum tests with the following results: HF  

( 0.047), LF  ( 0.021) for inexperienced bidders; HF LF ( 0.850), LF  

( 0.018) for experienced bidders (treating the session average return frequency as one independent 

observation). 

 

Figure 6: Choice of Return when  (in Percentage) 
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Proposition 4 in section 4.2, predicted that given our experimental parameters (in particular 

0) if the seller’s value of the item is zero, seller revenue should increase with the generosity of 

the return policy and the free return policy should be optimal for the sellers. However, this proposition 

was derived under the assumption that the efficient equilibrium would prevail in the FR case. Figure 7 

compares the bidders’ payments to the sellers across treatments. In general, the bidders’ average payment 

to the sellers increases as the handling fee for returning the auctioned item decreases as predicted. 

However, the payments are not highest in the FR treatment because many winning bids exceed 100 with 

the winners choosing to return the item when 100. Thus, the efficient equilibrium did not prevail in 

the FR case as was assumed in the theoretical derivation, and this was detrimental to seller revenues. The 

payments are actually highest in the LF rather than in the FR treatment.  
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Figure 7: Bidders’ Average Payment to the Sellers 
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Treating the average payment in each session as one independent observation, 

Wilcoxon-Mann-Whitney rank-sum tests yield the following results: NR HF ( 0.564), HF  

( 0.083), LF  ( 0.083), LF  ( 0.043) for inexperienced bidders; NR HF 

( 0.248), HF  ( 0.043), LF  ( 0.021), LF  ( 0.021) for experienced 

bidders. 
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A random-effects regression (with random effects at the sequence level, at the session level and at the 

individual level, and robust standard errors clustered at the sequence level) for treatment differences in 

bidders’ payments to sellers in each auction in Table 5 confirms this observation. Notice that in the FR 

treatment, bidders transfer less money to the sellers in the day-2-sessions compared with the day-1 

sessions (a Wald χ2 test shows that the sum of the coefficients of Experience and Experience*FR is 

negative with 0.001). This again reflects the behavior of many FR bidders who, after experiencing 

low payoffs during the day-1-sessions, bid above 100 and subsequently return the auctioned item for a 

full refund in the day-2-sessions.  
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Table 5: Comparing Bidders’ Payments to Sellers (with Robust Standard Errors) 

 Coef.  Robust Std. Err.  
Constant 16.199*** 1.24 
FR dummy 0.946 1.69 
LF dummy 5.408*** 1.83 
HF dummy 1.868 1.93 
Experience dummy 3.423* 1.88 
Experience*FR -8.942*** 2.48 
Experience*LF -0.060 2.90 
Experience*HF 0.252 2.03 
Obs. 5310 
Wald Chi2 96.06 
Log pseudolikelihood -26190.012 

* indicates significance at p = 0.10 (two-tailed tests); *** indicates significance at p = 0.01 (two-tailed 
tests). 

 In sum, our data suggest that a more generous return policy is associated with higher bids as 

predicted by theory. We also find that experienced bidders bid no closer than inexperienced bidders to the 

theoretically predicted bids. In our experiments, bids increase significantly as the signal increases, and 

bidders tend to bid higher during the later rounds of the Free-Return treatment. We empirically confirm 

the theoretical prediction that consumer surplus is lower with a more generous return policy. Finally, our 

experiments indicate that the seller’s revenue increases as the handling fee decreases as long as the 

handling fee remains positive. 

 

7. Conclusions 

This paper investigates the role of linear return policies in second-price auctions. The symmetric 

equilibrium is unique unless returns are free. With a more generous return policy, bidders act more 

aggressively. Since the winning bidder pays more, the consumer surplus is lower in such auctions. For 
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sellers, we demonstrate that a revenue-maximizing seller should never use a return fee that is proportional 

to the price paid for an item. Rather a fixed return fee should be used. Furthermore, since the winning 

bidder may return the object when s/he obtains more information regarding its value, a higher bid induced 

by a more generous return policy, while hurting bidders, may not always be beneficial to the seller. Only 

when the efficiency losses from returns are sufficiently small will a more generous return policy help the 

seller. 

Our laboratory observations support the theoretical prediction that the seller’s revenue increases as 

the handling fee for returning the auctioned item decreases, but remains positive. When returning the item 

is free, many bidders bid above the highest possible value and subsequently return the item regardless of 

the revealed value. This may be due to bidders deriving positive utility from the mere fact of winning the 

auction (e.g., Cox, Smith, and Walker,1992), even though they know that they will eventually return the 

object (at no cost). While this is consistent with equilibrium behavior, it is an inefficient equilibrium that 

is not optimal for the seller.  

In theory, there exist optimal mechanisms for sellers to maximize revenue. For our case of common 

values, a seller can extract the full surplus from bidders.12 However, those optimal mechanisms are not 

commonly observed in reality, partly because too much detail regarding the underlining environment is 

required for the seller to design an optimal mechanism. The discrepancy between theory and common 

practice prompts the claim that a set of simplicity and robustness criteria should be imposed on trading 

      
12See Cremer and McLean (1988) and McAfee and Reny (1992).  
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mechanisms.13 Our auctions with return policies are the sort of simple and familiar trading procedures 

that Hurwicz (1972), Lopomo (1998; 2001) and Wilson (1969) advocate. Furthermore, as we have shown 

in this paper, return policies, while being “simple” instruments, can be effective at increasing seller 

revenue under certain circumstances.  

In real life auctions, the seller may choose to offer return policies for other reasons, such as to signal 

the quality of the object. This may occur when information about quality is asymmetric, and is known as 

the informed principal problem. It differs from the case considered here in which neither the bidders nor 

the seller can observe the quality of the object prior to the auction. In a related paper by two of the authors, 

Wang and Zhang (2015), we use a conditional independent private value model to explore whether return 

policies can be used to signal the quality of an object when the seller knows the quality of the object, 

while the bidders do not. We find that in a binary quality setting, signaling may lead to a full separation of 

qualities. However, a better refund policy may not correspond to a better quality. 

 

 

  

      
13Hurwicz (1972) illustrates the need for mechanisms that are independent of the parameters of the model. Wilson(1969) points 
out that a desirable property of a trading rule is that it “does not rely on features of the agents”. Lopomo (1998, 2001) requires 
mechanisms to exhibit “simplicity” and “robustness”. 
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